®®®® SIIA Público

Título del libro: 2024 Ieee Pes Generation, Transmission And Distribution Latin America Conference And Industrial Exposition, Gtdla 2024
Título del capítulo: PQ-SyDa: Power Quality Synthetic Disturbances DataSet

Autores UNAM:
MARIO ROBERTO ARRIETA PATERNINA;
Autores externos:

Idioma:

Año de publicación:
2024
Palabras clave:

Deep learning; Event generators; Machine-learning; Power; Power quality event; Power quality event generator; PQ event; Python toolbox; User friendly; Adversarial machine learning


Resumen:

This paper presents a Phyton-based user-friendly graphical user interface (GUI) toolbox to synthetically generate power quality events dataset. This GUI is able to provide and export a versatile collection of tools designed specifically to create robust and realistic datasets for their utilization in the evaluation and testing of machine learning and deep learning algorithms for PQ events in power systems. A straightforward implementation is adopted to generate datasets with up to 29 different PQ events with automated label options. Numerical and graphical results demonstrate the effectiveness of the GUI. © 2024 IEEE.


Entidades citadas de la UNAM: