®®®® SIIA Público

Título del libro: Proceedings Of The 18th International Workshop On Semantic Evaluation, Semeval-2024
Título del capítulo: GIL-IIMAS UNAM at SemEval-2024 Task 1: SAND: An In Depth Analysis of Semantic Relatedness Using Regression and Similarity Characteristics

Autores UNAM:
KARLA DENIA SALAS JIMENEZ; GEMMA BEL ENGUIX;
Autores externos:

Idioma:

Año de publicación:
2024
Palabras clave:

Computational linguistics; Regression analysis; Semantics; Embeddings; Human's intuition; In-depth analysis; Model-based OPC; Multiple languages; N-grams; Semantic relatedness; Sentence length; Sentence similarity; Topic similarity


Resumen:

The STR shared task aims at detecting the degree of semantic relatedness between sentence pairs in multiple languages. Semantic relatedness relies on elements such as topic similarity, point of view agreement, entailment, and even human intuition, making it a broader field than sentence similarity. The GIL-IIMAS UNAM team proposes a model based in the SAND characteristics composition (Sentence Transformers, AnglE Embeddings, N-grams, Sentence Length Difference coefficient) and classical regression algorithms. This model achieves a 0.83 Spearman Correlation score in the English test, and a 0.73 in the Spanish counterpart, finishing just above the SemEval baseline in English, and second place in Spanish.


Entidades citadas de la UNAM: