®®®® SIIA Público

Título del libro: Gecco 2014 - Companion Publication Of The 2014 Genetic And Evolutionary Computation Conference
Título del capítulo: Portfolio optimization using an integer genetic algorithm

Autores UNAM:
KATYA RODRIGUEZ VAZQUEZ;
Autores externos:

Idioma:
Inglés
Año de publicación:
2014
Palabras clave:

Algorithms; Economics; Financial data processing; Genetic algorithms; Nonlinear programming; Integer genetic algorithm; Markowitz model; Mean-variance portfolios; Mixed-integer nonlinear programming; Non-linear integer programming; Optimization problems; Portfolio optimization; Portfolio selection models; Integer programming


Resumen:

The portfolio selection is an essential component of fund administration because it contributes to economic growth of the investor. Many of the related works use the Markowitz's mean-variance portfolio selection model approach to solve this optimization problem. However, the use of continuous variables in this approach does not allow us to implement directly the obtained solutions because assets cannot be divided. This paper presents a portfolio selection model that involves integer variables, allowing a more realistic treatment. Due to the complexity of this mixed-integer nonlinear programming problem, a corresponding genetic algorithm is used to solve it.


Entidades citadas de la UNAM: